Supplemental Materials

Appendix A: Stimuli Characteristics 1
Appendix B: Additional Demographic Information 19
Appendix C: Supplemental Studies 1a, 2a, and 3 23
Appendix D: Supplemental Studies 1b and 1c 37
Appendix E: Supplemental Studies 2b and 2c 40
Appendix F: Supplemental Study 4 43
Appendix G: Participants' Performance on the DateFest Game 50

Appendix A: Stimuli Characteristics

The following groups denote equivalent conditions across studies:
Group 1: Supplemental Study 1a Low complexity / Weak functional preference; Supplemental Study 1b Weak functional preference

Group 2: Supplemental Study 1a Low complexity / Strong functional preference; Supplemental Study 1b Strong functional preference

Group 3: Supplemental Study 1a High complexity / Weak functional preference; Supplemental Study 1c Weak functional preference

Group 4: Supplemental Study 1a High complexity / Strong functional preference; Supplemental Study 1c Strong functional preference

Group 5: Supplemental Study 2a Low complexity / Low quantity; Supplemental Study 2b Low quantity; Supplemental Study 3 Low quantity / No Flobe; Supplemental Study 4 Low complexity / Low quantity / Liking Task

Group 6: Supplemental Study 2a Low complexity / High quantity; Supplemental Study 3 High quantity / No Flobe; Supplemental Study 2b High quantity; Supplemental Study 4 Low complexity / High quantity / Liking Task

Group 7: Supplemental Study 2a High complexity / Low quantity; Supplemental Study 2c Low quantity; Supplemental Study 3 Low quantity / Equal Flobe; Supplemental Study 4 High complexity / Low quantity / Liking Task

Group 8: Supplemental Study 2a High complexity / High quantity; Supplemental Study 3 High quantity / Equal Flobe; Supplemental Study 2c High quantity; Supplemental Study 4 High complexity / High quantity / Liking Task

Study 1 and Supplemental Study 1a:

	17	I	$\mathrm{L} /+10$	9	--
	18	T	$\mathrm{L} /+10$	9	--
	19	Z	$\mathrm{L} /+10$	9	--
	20	V	$\mathrm{L} /+10$	9	--
	21	J	$\mathrm{L} /+10$	10	--
	22	W	$\mathrm{L} /+10$	10	--
	23	D	$\mathrm{L} /+10$	11	--
	24	E	$\mathrm{L} /+10$	12	--
High complexity/ Weak functional preference	1	A	D / -10	3	5
	2	B	D / -10	4	6
	3	C	D / -10	5	4
	4	D	D / -10	5	2
	5	E	D / -10	6	8
	6	F	D / -10	6	5
	7	G	D / -10	6	5
	8	H	D / -10	6	7
	9	I	D / -10	7	3
	10	J	D / -10	7	4
	11	K	D / -10	8	6
	12	L	D / -10	9	5
	13	X	$\mathrm{L} /+10$	4	8
	14	W	$\mathrm{L} /+10$	5	9
	15	V	$\mathrm{L} /+10$	6	7
	16	U	$\mathrm{L} /+10$	6	5
	17	T	$\mathrm{L} /+10$	7	11
	18	S	$\mathrm{L} /+10$	7	8
	19	R	$\mathrm{L} /+10$	7	8
	20	Q	$\mathrm{L} /+10$	7	10
	21	P	$\mathrm{L} /+10$	8	6
	22	O	$\mathrm{L} /+10$	8	7
	23	N	$\mathrm{L} /+10$	9	9
	24	M	$\mathrm{L} /+10$	10	8
High complexity/ Strong functional preference	1	A	D / -10	1	5
	2	B	D / -10	2	6
	3	C	D / -10	3	4
	4	D	D / -10	3	2
	5	E	D / -10	4	8
	6	F	D / -10	4	5
	7	G	D / -10	4	5
	8	H	D / -10	4	7
	9	I	D / -10	5	3
	10	J	D / -10	5	4
	11	K	D / -10	6	6
	12	L	D / -10	7	5

13	X	$\mathrm{L} /+10$	6	8
14	W	$\mathrm{~L} /+10$	7	9
15	V	$\mathrm{~L} /+10$	8	7
16	U	$\mathrm{L} /+10$	8	5
17	T	$\mathrm{~L} /+10$	9	11
18	S	$\mathrm{~L} /+10$	9	8
19	R	$\mathrm{L} /+10$	9	8
20	Q	$\mathrm{L} /+10$	9	10
21	P	$\mathrm{L} /+10$	10	6
22	O	$\mathrm{L} /+10$	10	7
23	N	$\mathrm{~L} /+10$	11	9
24	M	$\mathrm{L} /+10$	12	8

Note: $\mathrm{D}=$ Disliked, $\mathrm{L}=$ Liked, $-10=$ lose $10 \mathrm{pts},+10=$ gain 10 pts
Study 2 and Supplemental Study 2a:
Complexity x Attribute Quantity

Condition	Slide Number	Person Name	$\begin{aligned} & \text { Outcome } \\ & \text { SS2a / S2 } \end{aligned}$	Amount of Melb	Amount of Flobe
Low complexity /	1	M	D / -10	1	--
Low attribute quantity	2	N	D / -10	2	--
	3	O	D / -10	3	--
	4	A	D / -10	3	--
	5	P	D / -10	4	--
	6	B	D / -10	4	--
	7	C	D / -10	4	--
	8	K	D / -10	4	--
	9	Q	D / -10	5	--
	10	L	D / -10	5	--
	11	R	D / -10	6	--
	12	S	D / -10	7	--
	13	D	$\mathrm{L} /+10$	4	--
	14	E	$\mathrm{L} /+10$	5	--
	15	F	$\mathrm{L} /+10$	6	--
	16	T	$\mathrm{L} /+10$	6	--
	17	G	$\mathrm{L} /+10$	7	--
	18	U	$\mathrm{L} /+10$	7	--
	19	V	$\mathrm{L} /+10$	7	--
	20	W	$\mathrm{L} /+10$	7	--
	21	H	$\mathrm{L} /+10$	8	--
	22	X	$\mathrm{L} /+10$	8	--
	23	I	$\mathrm{L} /+10$	9	--
	24	J	$\mathrm{L} /+10$	10	--
	1	O	D / -10	3	--
High attribute quantity	2	P	D / -10	4	--
	3	Q	D / -10	5	--
	4	A	D / -10	5	--

	5	R	D / -10	6	--
	6	B	D / -10	6	--
	7	K	D / -10	6	--
	8	L	D / -10	6	--
	9	S	D / -10	7	--
	10	C	D / -10	7	--
	11	M	D / -10	8	--
	12	Y	D / -10	9	--
	13	F	$\mathrm{L} /+10$	6	--
	14	G	$\mathrm{L} /+10$	7	--
	15	H	$\mathrm{L} /+10$	8	--
	16	X	$\mathrm{L} /+10$	8	--
	17	I	$\mathrm{L} /+10$	9	--
	18	T	$\mathrm{L} /+10$	9	--
	19	Z	$\mathrm{L} /+10$	9	--
	20	V	$\mathrm{L} /+10$	9	--
	21	J	$\mathrm{L} /+10$	10	--
	22	W	$\mathrm{L} /+10$	10	--
	23	D	$\mathrm{L} /+10$	11	--
	24	E	$\mathrm{L} /+10$	12	--
High complexity/	1	A	D / -10	1	5
Low attribute quantity	2	B	D / -10	2	6
	3	C	D / -10	3	4
	4	D	D / -10	3	2
	5	E	D / -10	4	8
	6	F	D / -10	4	5
	7	G	D / -10	4	5
	8	H	D / -10	4	7
	9	I	D / -10	5	3
	10	J	D / -10	5	4
	11	K	D / -10	6	6
	12	L	D / -10	7	5
	13	X	$\mathrm{L} /+10$	4	8
	14	W	$\mathrm{L} /+10$	5	9
	15	V	$\mathrm{L} /+10$	6	7
	16	U	$\mathrm{L} /+10$	6	5
	17	T	$\mathrm{L} /+10$	7	11
	18	S	$\mathrm{L} /+10$	7	8
	19	R	$\mathrm{L} /+10$	7	8
	20	Q	$\mathrm{L} /+10$	7	10
	21	P	$\mathrm{L} /+10$	8	6
	22	O	$\mathrm{L} /+10$	8	7
	23	N	$\mathrm{L} /+10$	9	9
	24	M	$\mathrm{L} /+10$	10	8
High complexity/	1	A	D / -10	3	5

High attribute quantity	2	B	$\mathrm{D} /-10$	4	6
	3	C	$\mathrm{D} /-10$	5	4
	4	D	$\mathrm{D} /-10$	5	2
	5	E	$\mathrm{D} /-10$	6	8
	6	F	$\mathrm{D} /-10$	6	5
	7	G	$\mathrm{D} /-10$	6	5
	8	H	$\mathrm{D} /-10$	6	7
	9	I	$\mathrm{D} /-10$	7	3
	10	J	$\mathrm{D} /-10$	7	4
	11	K	$\mathrm{D} /-10$	8	6
12	L	$\mathrm{D} /-10$	9	5	
	13	X	$\mathrm{L} /+10$	6	8
	14	W	$\mathrm{~L} /+10$	7	9
15	V	$\mathrm{~L} /+10$	8	7	
	16	U	$\mathrm{L} /+10$	8	5
17	T	$\mathrm{~L} /+10$	9	11	
	18	S	$\mathrm{~L} /+10$	9	8
	19	R	$\mathrm{L} /+10$	9	8
	20	Q	$\mathrm{L} /+10$	9	10
21	P	$\mathrm{L} /+10$	10	6	
	22	O	$\mathrm{L} /+10$	10	7
	23	N	$\mathrm{~L} /+10$	11	9
	24	M	$\mathrm{L} /+10$	12	8

Note: D $=$ Disliked, L $=$ Liked, $-10=$ lose $10 \mathrm{pts},+10=$ gain 10 pts

Study 3 and Supplemental Study 3:

Reference Standard x Attribute Quantity

Condition	Slide Number	Person Name	Outcome SS3 $/$ S3	Amount of Melb	Amount of Flobe
Low attribute quantity /	1	M	$\mathrm{D} /-10$	1	--
No Flobe	2	N	$\mathrm{D} /-10$	2	--
	3	O	$\mathrm{D} /-10$	3	--
	4	A	$\mathrm{D} /-10$	3	--
	5	P	$\mathrm{D} /-10$	4	--
	6	B	$\mathrm{D} /-10$	4	--
	7	C	$\mathrm{D} /-10$	4	--
	8	K	$\mathrm{D} /-10$	4	--
	9	Q	$\mathrm{D} /-10$	5	--
	10	L	$\mathrm{D} /-10$	5	-
	11	R	$\mathrm{D} /-10$	6	--
	12	S	$\mathrm{D} /-10$	7	--
	13	D	$\mathrm{L} /+10$	4	--
	14	E	$\mathrm{L} /+10$	5	--
	15	F	$\mathrm{~L} /+10$	6	--
	16	T	$\mathrm{~L} /+10$	6	--

	17	G	$\mathrm{L} /+10$	7	--
	18	U	$\mathrm{L} /+10$	7	--
	19	V	$\mathrm{L} /+10$	7	--
	20	W	$\mathrm{L} /+10$	7	--
	21	H	L/ +10	8	--
	22	X	L/ +10	8	--
	23	I	$\mathrm{L} /+10$	9	--
	24	J	$\mathrm{L} /+10$	10	--
High attribute quantity /	1	M	D / -10	3	--
No Flobe	2	N	D / -10	4	--
	3	O	D / -10	5	--
	4	A	D / -10	5	--
	5	P	D / -10	6	--
	6	B	D / -10	6	--
	7	C	D / -10	6	--
	8	K	D / -10	6	--
	9	Q	D / -10	7	--
	10	L	D / -10	7	--
	11	R	D / -10	8	--
	12	S	D / -10	9	--
	13	D	L/ +10	6	--
	14	E	$\mathrm{L} /+10$	7	--
	15	F	$\mathrm{L} /+10$	8	--
	16	T	$\mathrm{L} /+10$	8	--
	17	G	$\mathrm{L} /+10$	9	--
	18	U	$\mathrm{L} /+10$	9	--
	19	V	$\mathrm{L} /+10$	9	--
	20	W	$\mathrm{L} /+10$	9	--
	21	H	$\mathrm{L} /+10$	10	--
	22	X	$\mathrm{L} /+10$	10	--
	23	I	$\mathrm{L} /+10$	11	--
	24	J	$\mathrm{L} /+10$	12	--
	1	M	D / -10	1	5
	2	N	D / -10	2	6
Unequal Flobe	3	O	D / -10	3	4
	4	A	D / -10	3	2
	5	P	D / -10	4	8
	6	B	D / -10	4	5
	7	C	D / -10	4	5
	8	K	D / -10	4	7
	9	Q	D / -10	5	3
	10	L	D / -10	5	4
	11	R	D / -10	6	6
	12	S	D / -10	7	5
	13	D	L/ +10	4	8

	14	E	$\mathrm{L} /+10$	5	9
	15	F	$\mathrm{L} /+10$	6	7
	16	T	$\mathrm{L} /+10$	6	5
	17	G	$\mathrm{L} /+10$	7	11
	18	U	$\mathrm{L} /+10$	7	8
	19	V	$\mathrm{L} /+10$	7	8
	20	W	$\mathrm{L} /+10$	7	10
	21	H	$\mathrm{L} /+10$	8	6
	22	X	$\mathrm{L} /+10$	8	7
	23	I	$\mathrm{L} /+10$	9	9
	24	J	$\mathrm{L} /+10$	10	8
High attribute quantity /	1	M	D / -10	3	5
Unequal Flobe	2	N	D / -10	4	6
Unequal Flobe	3	O	D / -10	5	4
	4	A	D / -10	5	2
	5	P	D / -10	6	8
	6	B	D / -10	6	5
	7	C	D / -10	6	5
	8	K	D / -10	6	7
	9	Q	D / -10	7	3
	10	L	D / -10	7	4
	11	R	D / -10	8	6
	12	S	D / -10	9	5
	13	D	$\mathrm{L} /+10$	6	8
	14	E	$\mathrm{L} /+10$	7	9
	15	F	$\mathrm{L} /+10$	8	7
	16	T	$\mathrm{L} /+10$	8	5
	17	G	$\mathrm{L} /+10$	9	11
	18	U	$\mathrm{L} /+10$	9	8
	19	V	$\mathrm{L} /+10$	9	8
	20	W	$\mathrm{L} /+10$	9	10
	21	H	$\mathrm{L} /+10$	10	6
	22	X	$\mathrm{L} /+10$	10	7
	23	I	$\mathrm{L} /+10$	11	9
	24	J	$\mathrm{L} /+10$	12	8
	1	M	D / -10	1	4
Low attribute quantity /	2	N	D / -10	2	5
Equal Flobe	3	O	D / -10	3	3
	4	A	D / -10	3	1
	5	P	D / -10	4	7
	6	B	D / -10	4	4
	7	C	D / -10	4	4
	8	K	D / -10	4	6
	9	Q	D / -10	5	2
	10	L	D / -10	5	3

	11	R	D / -10	6	5
	12	S	D / -10	7	4
	13	D	$\mathrm{L} /+10$	4	7
	14	E	$\mathrm{L} /+10$	5	8
	15	F	$\mathrm{L} /+10$	6	6
	16	T	$\mathrm{L} /+10$	6	4
	17	G	$\mathrm{L} /+10$	7	10
	18	U	$\mathrm{L} /+10$	7	7
	19	V	$\mathrm{L} /+10$	7	7
	20	W	$\mathrm{L} /+10$	7	9
	21	H	$\mathrm{L} /+10$	8	5
	22	X	$\mathrm{L} /+10$	8	6
	23	I	L/ +10	9	8
	24	J	$\mathrm{L} /+10$	10	7
High attribute quantity $/$ Equal Flobe	1	M	D / -10	3	6
	2	N	D / -10	4	7
	3	O	D / -10	5	5
	4	A	D / -10	5	3
	5	P	D / -10	6	9
	6	B	D / -10	6	6
	7	C	D / -10	6	6
	8	K	D / -10	6	8
	9	Q	D / -10	7	4
	10	L	D / -10	7	5
	11	R	D / -10	8	7
	12	S	D / -10	9	6
	13	D	L/ +10	6	9
	14	E	$\mathrm{L} /+10$	7	10
	15	F	$\mathrm{L} /+10$	8	8
	16	T	$\mathrm{L} /+10$	8	6
	17	G	$\mathrm{L} /+10$	9	12
	18	U	$\mathrm{L} /+10$	9	9
	19	V	L/ +10	9	9
	20	W	L/ +10	9	11
	21	H	$\mathrm{L} /+10$	10	7
	22	X	$\mathrm{L} /+10$	10	8
	23	I	$\mathrm{L} /+10$	11	10
	24	J	$\mathrm{L} /+10$	12	9

Note: $\mathrm{D}=$ Disliked, $\mathrm{L}=$ Liked, $-10=$ lose $10 \mathrm{pts},+10=$ gain 10 pts

Supplemental Study 1b: Melb

Condition	Slide Number	Person Name	Liked or Disliked	Amount of Melb	Amount of Flobe
Weak functional preference	1	O	Disliked	3	--

	2	P	Disliked	4	--
	3	Q	Disliked	5	--
	4	A	Disliked	5	--
	5	R	Disliked	6	--
	6	B	Disliked	6	--
	7	K	Disliked	6	--
	8	L	Disliked	6	--
	9	S	Disliked	7	--
	10	C	Disliked	7	--
	11	M	Disliked	8	--
	12	Y	Disliked	9	--
	13	D	Liked	4	--
	14	E	Liked	5	--
	15	F	Liked	6	--
	16	T	Liked	6	--
	17	G	Liked	7	--
	18	U	Liked	7	--
	19	V	Liked	7	--
	20	W	Liked	7	--
	21	H	Liked	8	--
	22	X	Liked	8	--
	23	I	Liked	9	--
	24	J	Liked	10	--
Strong functional preference	1	M	Disliked	1	--
	2	N	Disliked	2	--
	3	O	Disliked	3	--
	4	A	Disliked	3	--
	5	P	Disliked	4	--
	6	B	Disliked	4	--
	7	C	Disliked	4	--
	8	K	Disliked	4	--
	9	Q	Disliked	5	--
	10	L	Disliked	5	--
	11	R	Disliked	6	--
	12	S	Disliked	7	--
	13	F	Liked	6	--
	14	G	Liked	7	--
	15	H	Liked	8	--
	16	X	Liked	8	--
	17	I	Liked	9	--
	18	T	Liked	9	--
	19	Z	Liked	9	--
	20	V	Liked	9	--
	21	J	Liked	10	--
	22	W	Liked	10	--
	23	D	Liked	11	--

24 E Liked 12 --

Supplemental Study 1c: Melb \& Flobe

Condition	$\begin{gathered} \hline \text { Slide } \\ \text { Number } \end{gathered}$	Person Name	Liked or Disliked	Amount of Melb	Amount of Flobe
Weak functional preference	1	A	Disliked	3	5
	2	B	Disliked	4	6
	3	C	Disliked	5	4
	4	D	Disliked	5	2
	5	E	Disliked	6	8
	6	F	Disliked	6	5
	7	G	Disliked	6	5
	8	H	Disliked	6	7
	9	I	Disliked	7	3
	10	J	Disliked	7	4
	11	K	Disliked	8	6
	12	L	Disliked	9	5
	13	X	Liked	4	8
	14	W	Liked	5	9
	15	V	Liked	6	7
	16	U	Liked	6	5
	17	T	Liked	7	11
	18	S	Liked	7	8
	19	R	Liked	7	8
	20	Q	Liked	7	10
	21	P	Liked	8	6
	22	O	Liked	8	7
	23	N	Liked	9	9
	24	M	Liked	10	8
Strong functional preference	1	A	Disliked	1	5
	2	B	Disliked	2	6
	3	C	Disliked	3	4
	4	D	Disliked	3	2
	5	E	Disliked	4	8
	6	F	Disliked	4	5
	7	G	Disliked	4	5
	8	H	Disliked	4	7
	9	I	Disliked	5	3
	10	J	Disliked	5	4
	11	K	Disliked	6	6
	12	L	Disliked	7	5
	13	X	Liked	6	8
	14	W	Liked	7	9
	15	V	Liked	8	7

16	U	Liked	8	5
17	T	Liked	9	11
18	S	Liked	9	8
19	R	Liked	9	8
20	Q	Liked	9	10
21	P	Liked	10	6
22	O	Liked	10	7
23	N	Liked	11	9
24	M	Liked	12	8

Supplemental Study 2b: Melb

Condition	Slide Number	Person Name	Liked or Disliked	Amount of Melb	Amount of Flobe
Low attribute quantity	1	M	Disliked	1	--
	2	N	Disliked	2	--
	3	O	Disliked	3	--
	4	A	Disliked	3	--
	5	P	Disliked	4	--
	6	B	Disliked	4	--
	7	C	Disliked	4	--
	8	K	Disliked	4	--
	9	Q	Disliked	5	--
	10	L	Disliked	5	--
	11	R	Disliked	6	--
	12	S	Disliked	7	--
	13	D	Liked	4	--
	14	E	Liked	5	--
	15	F	Liked	6	--
	16	T	Liked	6	--
	17	G	Liked	7	--
	18	U	Liked	7	--
	19	V	Liked	7	--
	20	W	Liked	7	--
	21	H	Liked	8	--
	22	X	Liked	8	--
	23	I	Liked	9	--
	24	J	Liked	10	--
High attribute quantity	1	O	Disliked	3	--
	2	P	Disliked	4	--
	3	Q	Disliked	5	--
	4	A	Disliked	5	--
	5	R	Disliked	6	--
	6	B	Disliked	6	--

7	K	Disliked	6	--
8	L	Disliked	6	--
9	S	Disliked	7	--
10	C	Disliked	7	--
11	M	Disliked	8	--
12	Y	Disliked	9	--
13	F	Liked	6	--
14	G	Liked	7	--
15	H	Liked	8	--
16	X	Liked	8	--
17	I	Liked	9	--
18	T	Liked	9	--
19	Z	Liked	9	--
20	V	Liked	9	--
21	J	Liked	10	--
22	W	Liked	10	--
23	D	Liked	11	--
24	E	Liked	12	--

Supplemental Study 2c: Melb \& Flobe

Condition	Slide Number	Person Name	Liked or Disliked	Amount of Melb	Amount of Flobe
Low attribute quantity	1	A	Disliked	1	5
	2	B	Disliked	2	6
	3	C	Disliked	3	4
	4	D	Disliked	3	2
	5	E	Disliked	4	8
	6	F	Disliked	4	5
	7	G	Disliked	4	5
	8	H	Disliked	4	7
	9	I	Disliked	5	3
	10	J	Disliked	5	4
	11	K	Disliked	6	6
	12	L	Disliked	7	5
	13	X	Liked	4	8
14	W	Liked	5	9	
	15	V	Liked	6	7
	16	U	Liked	6	5
	17	T	Liked	7	11
	18	S	Liked	7	8
19	R	Liked	7	8	
	20	Q	Liked	7	10
	21	P	Liked	8	6
	22	O	Liked	8	7
	23	N	Liked	9	9

	24	M	Liked	10	8
High attribute quantity	1	A	Disliked	3	5
	2	B	Disliked	4	6
	3	C	Disliked	5	4
	4	D	Disliked	5	2
	5	E	Disliked	6	8
	6	F	Disliked	6	5
	7	G	Disliked	6	5
	8	H	Disliked	6	7
	9	I	Disliked	7	3
	10	J	Disliked	7	4
	11	K	Disliked	8	6
	12	L	Disliked	9	5
	13	X	Liked	6	8
	14	W	Liked	7	9
	15	V	Liked	8	7
	16	U	Liked	8	5
	17	T	Liked	9	11
	18	S	Liked	9	8
	19	R	Liked	9	8
	20	Q	Liked	9	10
	21	P	Liked	10	6
	22	O	Liked	10	7
	23	N	Liked	11	9
	24	M	Liked	12	8

Supplemental Study 4: Complexity x Quantity x Task Version of Functional Preference

Condition	Slide Number	Person Name	Liked or Disliked	Amount of Melb	Amount of Flobe
Low complexity/	1	M	Disliked	1	--
Low attribute quantity /	2	N	Disliked	2	--
Liking task	3	O	Disliked	3	--
	4	A	Disliked	3	--
	5	P	Disliked	4	--
	6	B	Disliked	4	--
	7	C	Disliked	4	--
	8	K	Disliked	4	--
	9	Q	Disliked	5	--
	10	L	Disliked	5	--
	11	R	Disliked	6	--
	12	S	Disliked	7	--
	13	D	Liked	4	--

	14	E	Liked	5	--
	15	F	Liked	6	--
	16	T	Liked	6	--
	17	G	Liked	7	--
	18	U	Liked	7	--
	19	V	Liked	7	--
	20	W	Liked	7	--
	21	H	Liked	8	--
	22	X	Liked	8	--
	23	I	Liked	9	--
	24	J	Liked	10	--
Low complexity /	1	O	Disliked	3	--
High attribute quantity /	2	P	Disliked	4	--
Liking task	3	Q	Disliked	5	--
	4	A	Disliked	5	--
	5	R	Disliked	6	--
	6	B	Disliked	6	--
	7	K	Disliked	6	--
	8	L	Disliked	6	--
	9	S	Disliked	7	--
	10	C	Disliked	7	--
	11	M	Disliked	8	--
	12	Y	Disliked	9	--
	13	F	Liked	6	--
	14	G	Liked	7	--
	15	H	Liked	8	--
	16	X	Liked	8	--
	17	I	Liked	9	--
	18	T	Liked	9	--
	19	Z	Liked	9	--
	20	V	Liked	9	--
	21	J	Liked	10	--
	22	W	Liked	10	--
	23	D	Liked	11	--
	24	E	Liked	12	--
High complexity/	1	A	Disliked	1	5
Low attribute quantity /	2	B	Disliked	2	6
Liking task	3	C	Disliked	3	4
	4	D	Disliked	3	2
	5	E	Disliked	4	8
	6	F	Disliked	4	5
	7	G	Disliked	4	5
	8	H	Disliked	4	7
	9	I	Disliked	5	3
	10	J	Disliked	5	4

	11	K	Disliked	6	6
	12	L	Disliked	7	5
	13	X	Liked	4	8
	14	W	Liked	5	9
	15	V	Liked	6	7
	16	U	Liked	6	5
	17	T	Liked	7	11
	18	S	Liked	7	8
	19	R	Liked	7	8
	20	Q	Liked	7	10
	21	P	Liked	8	6
	22	O	Liked	8	7
	23	N	Liked	9	9
	24	M	Liked	10	8
High complexity/	1	A	Disliked	3	5
High attribute quantity/	2	B	Disliked	4	6
Liking task	3	C	Disliked	5	4
	4	D	Disliked	5	2
	5	E	Disliked	6	8
	6	F	Disliked	6	5
	7	G	Disliked	6	5
	8	H	Disliked	6	7
	9	I	Disliked	7	3
	10	J	Disliked	7	4
	11	K	Disliked	8	6
	12	L	Disliked	9	5
	13	X	Liked	6	8
	14	W	Liked	7	9
	15	V	Liked	8	7
	16	U	Liked	8	5
	17	T	Liked	9	11
	18	S	Liked	9	8
	19	R	Liked	9	8
	20	Q	Liked	9	10
	21	P	Liked	10	6
	22	O	Liked	10	7
	23	N	Liked	11	9
	24	M	Liked	12	8
	Slide Number	Person Name	Team Assignment	Amount of Melb	Amount of Flobe
Low complexity /	1	M	John's	1	--
Low attribute quantity /	2	N	John's	2	--
Teams task	3	O	John's	3	--
	4	A	John's	3	--
	5	P	John's	4	--

	6	B	John's	4	--
	7	C	John's	4	--
	8	K	John's	4	--
	9	Q	John's	5	--
	10	L	John's	5	--
	11	R	John's	6	--
	12	S	John's	7	--
	13	D	Robert's	4	--
	14	E	Robert's	5	--
	15	F	Robert's	6	--
	16	T	Robert's	6	--
	17	G	Robert's	7	--
	18	U	Robert's	7	--
	19	V	Robert's	7	--
	20	W	Robert's	7	--
	21	H	Robert's	8	--
	22	X	Robert's	8	--
	23	I	Robert's	9	--
	24	J	Robert's	10	--
Low complexity /	1	O	John's	3	--
High attribute quantity /	2	P	John's	4	--
Teams task	3	Q	John's	5	--
	4	A	John's	5	--
	5	R	John's	6	--
	6	B	John's	6	--
	7	K	John's	6	--
	8	L	John's	6	--
	9	S	John's	7	--
	10	C	John's	7	--
	11	M	John's	8	--
	12	Y	John's	9	--
	13	F	Robert's	6	--
	14	G	Robert's	7	--
	15	H	Robert's	8	--
	16	X	Robert's	8	--
	17	I	Robert's	9	--
	18	T	Robert's	9	--
	19	Z	Robert's	9	--
	20	V	Robert's	9	--
	21	J	Robert's	10	--
	22	W	Robert's	10	--
	23	D	Robert's	11	--
	24	E	Robert's	12	--
High complexity/	1	A	John's	1	5
Low attribute quantity /	2	B	John's	2	6

Teams task	3	C	John's	3	4
	4	D	John's	3	2
	5	E	John's	4	8
	6	F	John's	4	5
	7	G	John's	4	5
	8	H	John's	4	7
	9	I	John's	5	3
	10	J	John's	5	4
	11	K	John's	6	6
	12	L	John's	7	5
	13	X	Robert's	4	8
	14	W	Robert's	5	9
	15	V	Robert's	6	7
	16	U	Robert's	6	5
	17	T	Robert's	7	11
	18	S	Robert's	7	8
	19	R	Robert's	7	8
	20	Q	Robert's	7	10
	21	P	Robert's	8	6
	22	O	Robert's	8	7
	23	N	Robert's	9	9
	24	M	Robert's	10	8
High complexity/	1	A	John's	3	5
High attribute quantity/	2	B	John's	4	6
Teams task	3	C	John's	5	4
	4	D	John's	5	2
	5	E	John's	6	8
	6	F	John's	6	5
	7	G	John's	6	5
	8	H	John's	6	7
	9	I	John's	7	3
	10	J	John's	7	4
	11	K	John's	8	6
	12	L	John's	9	5
	13	X	Robert's	6	8
	14	W	Robert's	7	9
	15	V	Robert's	8	7
	16	U	Robert's	8	5
	17	T	Robert's	9	11
	18	S	Robert's	9	8
	19	R	Robert's	9	8
	20	Q	Robert's	9	10
	21	P	Robert's	10	6
	22	O	Robert's	10	7
	23	N	Robert's	11	9
	24	M	Robert's	12	8

Appendix B: Additional Demographic Information

Our samples were approximately as diverse as the average college student sample with respect to sexuality, and more diverse with respect to age and race/ethnicity. We anticipate that our findings would generalize to populations who are comfortable using a computer to answer questions about dating decisions and preferences. Additionally, recent reports indicate that samples obtained from Mechanical Turk offer a range of benefits compared to typical subject pools (Gosling \& Johnson, 2010), including being more diverse than samples sourced from other internet platforms (Kraut, 2004; Buhrmester, Kwang, \& Gosling, 2011), and more representative than traditional college samples from the Unites States (Buhrmester et al., 2011).

Study 1: The racial profile of the sample was 73.1% European-American, Anglo, Caucasian; 8.2\% Asian-American, Asian, Pacific Islander; 8.0\% African-American, Black, African, Caribbean; 5.5\% Hispanic-American, Latino(a), Chicano(a); 4.1\% Bi-racial, Multiracial; 0.5\% Native-American, American Indian; and 0.5\% "Other." Seventy-three percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was $118.5(S D=115.7)$ months. The majority of participants (80.8\%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex" (on a 9-point very strongly disagree to very strongly agree scale), whereas a minority (6.3\%) indicated a " 1 " or a " 2 ".

Study 2: The racial profile of the sample was 74.0\% European-American, Anglo, Caucasian; 7.8\% African-American, Black, African, Caribbean; 6.1\% Asian-American, Asian, Pacific Islander; 5.3\% Hispanic-American, Latino(a), Chicano(a); 5.0\% Bi-racial, Multi-racial; 0.6\% Native-American, American Indian; and 1.2\% "Other" or unreported. Sixty-eight percent of participants indicated that they were in a committed, romantic relationship at the time of
taking the survey and the average relationship length was $136.7(S D=135.8)$ months. The majority of participants (82.0%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (5.4\%) indicated a " 1 " or a " 2 ".

Study 3: The racial profile of the sample was 74.9\% European-American, Anglo, Caucasian; 7.6\% African-American, Black, African, Caribbean; 6.0\% Asian-American, Asian, Pacific Islander; 5.3\% Hispanic-American, Latino(a), Chicano(a); 4.0\% Bi-racial, Multi-racial; 1.0% Native-American, American Indian; and 1.2% "Other". Seventy percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was $115.4(S D=118.7)$ months. The majority of participants (77.4\%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (8.0\%) indicated a " 1 " or a " 2 ".

Supplemental Study 1a: The racial profile of the sample was 73.6% European-
American, Anglo, Caucasian; 7.8\% Asian-American, Asian, Pacific Islander; 4.7\% HispanicAmerican, Latino(a), Chicano(a); 7.3\% African-American, Black, African, Caribbean; 0.3\% Native-American, American Indian; 3.9\% Bi-racial, Multi-racial; and 2.1\% "Other." Sixty-eight percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was $96.7(S D=107.1)$ months. The majority of participants (78.2\%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (8.5\%) indicated a " 1 " or a " 2 ".

Supplemental Study 2a: The racial profile of the sample was 67.7% EuropeanAmerican, Anglo, Caucasian; 6.4\% Asian-American, Asian, Pacific Islander; 5.9\% HispanicAmerican, Latino(a), Chicano(a); 9.4\% African-American, Black, African, Caribbean; 0.2\% Native-American, American Indian; 4.9\% Bi-racial, Multi-racial; and 0.7\% "Other." Sixty-four
percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was $86.0(S D=98.0)$ months. The majority of participants (80.2%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (4.9\%) indicated a " 1 " or a " 2 ".

Supplemental Study 3: The racial profile of the sample was 71.1% European-American, Anglo, Caucasian; 6.1\% Asian-American, Asian, Pacific Islander; 5.6\% Hispanic-American, Latino(a), Chicano(a); 9.2\% African-American, Black, African, Caribbean; 1.0% NativeAmerican, American Indian; 4.4\% Bi-racial, Multi-racial; and 1.9\% "Other." Seventy-one percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was $98.0(S D=108.7)$ months. The majority of participants (76.7%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (8.0\%) indicated a " 1 " or a " 2 ".

Supplemental Study 1b: The racial profile of the sample was 75.3\% EuropeanAmerican, Anglo, Caucasian; 12.4\% Asian-American, Asian, Pacific Islander; 6.2\% HispanicAmerican, Latino(a), Chicano(a); 3.1\% African-American, Black, African, Caribbean; 0\% Native-American, American Indian; 3.1\% Bi-racial, Multi-racial; and 0\% "Other." Fifty-six percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was $65.2(S D=80.0)$ months. The majority of participants (76.3\%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (6.2\%) indicated a " 1 " or a " 2 ".

Supplemental Study 1c: The racial profile of the sample was 74.0% European-
American, Anglo, Caucasian; 2.0\% Asian-American, Asian, Pacific Islander; 8.0\% HispanicAmerican, Latino(a), Chicano(a); 9.0\% African-American, Black, African, Caribbean; 2.0\%

Native-American, American Indian; 5.0\% Bi-racial, Multi-racial; and 0\% "Other." Seventyseven percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was 110.5 ($S D=125.4$) months. The majority of participants (89.0%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (5.0\%) indicated a " 1 " or a " 2 ".

Supplemental Study 2b: The racial profile of the sample was 65.6% EuropeanAmerican, Anglo, Caucasian; 10.4\% Asian-American, Asian, Pacific Islander; 9.4\% HispanicAmerican, Latino(a), Chicano(a); 7.3\% African-American, Black, African, Caribbean; 2.1\% Native-American, American Indian; 5.2\% Bi-racial, Multi-racial; and 0\% "Other." Fifty-six percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was $72.2(S D=95.9)$ months. The majority of participants (85.4%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (5.2\%) indicated a " 1 " or a " 2 ".

Supplemental Study 2c: The racial profile of the sample was 77.7% EuropeanAmerican, Anglo, Caucasian; 4.3\% Asian-American, Asian, Pacific Islander; 5.3\% HispanicAmerican, Latino(a), Chicano(a); 8.5\% African-American, Black, African, Caribbean; 2.1\% Native-American, American Indian; 1.1\% Bi-racial, Multi-racial; and 1.1\% "Other." Sixty-nine percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was $150.7(S D=158.8)$ months. The majority of participants (78.7\%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (5.0\%) indicated a " 1 " or a " 2 ".

Supplemental Study 4: The racial profile of the sample was 73.1% European-American, Anglo, Caucasian; 5.4\% Asian-American, Asian, Pacific Islander; 6.1\% Hispanic-American,

Latino(a), Chicano(a); 9.3\% African-American, Black, African, Caribbean; 1.0\% NativeAmerican, American Indian; 3.0\% Bi-racial, Multi-racial; and 1.6\% "Other." Sixty-six percent of participants indicated that they were in a committed, romantic relationship at the time of taking the survey and the average relationship length was $112.5(S D=119.8)$ months. The majority of participants (83.2%) indicated an " 8 " or " 9 " the statement "I am exclusively attracted to members of the opposite sex," whereas a minority (6.2\%) indicated a " 1 " or a " 2 ".

Appendix C: Supplemental Studies 1a, 2a, and 3

The structure of Supplemental Studies 1a, 2a, and 3 is identical to Studies 1, 2, and 3 as reported in the main manuscript. The primary difference is that these three studies examined people's ability to infer another person's summarized preference. Specifically, these studies used a scenario in which participants encountered an imaginary character with the gender-neutral name, Casey, who met 24 potential mates at a party on another planet. Participants subsequently saw information about the covariation between two variables: (a) the amount of "Melb" (an imaginary attribute) each of the potential mates possessed and (b) whether Casey liked or disliked each of the potential mates. The covariation between these two variables across the 24 potential mates constituted Casey's functional preference for Melb. After reviewing this functional preference information, participants reported Casey's summarized preference for Melb (e.g., "How important is Melb to Casey in a romantic partner?") as the dependent measure. Participants in these studies (but not the studies reported in the main manuscript) in the high complexity condition also reported Casey's summarized preference for Flobe (e.g., "How important is Flobe to Casey in a romantic partner?) as an exploratory measure.

Supplemental Study 1a

This study employed a 2 (functional preference strength: weak vs. strong) x 2 (stimuli complexity: low vs. high) experimental design to examine whether participants' inferences about another person's summarized preference for a trait in a mate reflected that person's functional preferences for the trait in a mate, and whether this relationship was moderated by stimuli complexity.

Method

Participants. Participants were 407 workers recruited from MTurk. Twenty-one participants who completed the survey were excluded from any subsequent analyses because they selected the incorrect response to the attention check item, making our final sample size 386 participants (47.9\% male, 51.8% female and 0.26% Other; aged $18-74, M_{\text {age }}=34.9, S D=12.2$).

Procedure. Participants watched a 2-minute, illustrated video containing the background and instructions for the study. They were told about an individual named "Casey" who lived on another planet where people had many different powers.

Manipulation of stimuli complexity. Participants in the low complexity condition learned that Casey lived on a planet where people had the ability to move objects with their minds. This ability was called Melb and people had varying levels of it. Melb was depicted as a glowing, red orb centered on a person's head. The more Melb a person had, the larger their red orb was. Participants in the high complexity condition learned that Casey lived on a planet where people had varying levels of Melb and varying levels of an additional trait called Flobe-the ability to float in the air. Flobe was depicted as a glowing, golden disk floating underneath an individual's feet. The more Flobe a person had, the larger the golden disk.

Covariation detection task. Participants then learned that Casey went to a party and met a bunch of different people. Specifically, participants saw a slideshow of 24 people Casey met at this party, each represented by a stick figure with a trivial name (e.g., Person A, Person B, Person C.) The 24 slides were presented in a random order. Each slide contained the following information: (a) the amount of Melb (low complexity condition) or Melb and Flobe (high complexity condition) each person had, and (b) whether Casey liked or disliked the person (12 people were liked and 12 people were disliked), see Figure 1 of the main manuscript. Each slide appeared for 8 seconds before automatically advancing to the next slide. Participants were told that while viewing the slideshow that they should "try to get an idea of Casey's likes and dislikes, as well as how much Melb (or Melb and Flobe), each person had." Stimuli properties for all studies are presented in the Supplemental Materials, Appendix A.

Manipulating Casey's functional preference strength. We manipulated Casey's functional preference for Melb by varying the strength of the covariation between the amount of Melb each of the 24 potential mates had and Casey's evaluations of those potential mates. In the weak functional preference condition, the people Casey liked and disliked had very similar values of Melb on average-meaning that the amount of Melb a person had only weakly predicted whether Casey liked or disliked them (the average Melb of the people Casey liked was 7 and the average Melb of the people Casey disliked was 6; Figure 3 of the main manuscript, top). In the strong functional preference condition, the people Casey liked had a much higher average value of Melb than the people Casey disliked-meaning that the amount of Melb a person had strongly predicted whether Casey liked or disliked them (the average Melb of the people Casey liked was 9 and the average Melb of the people Casey disliked was 4; Figure 3 of the main manuscript, bottom). The average Melb of all 24 potential mates was held constant
across the weak functional preference and strong functional preference conditions (i.e., the average Melb was always 6.5).

We did not manipulate the functional preference strength of Flobe. As stated above, Flobe was simply included as a manipulation of stimuli complexity. To ensure that Flobe was equally likeable across both the weak and strong Melb functional preference conditions, the people Casey liked always had an average Flobe of 8 and the people Casey disliked always had an average Flobe of 5. To keep the information presented about Casey's functional preference for each trait orthogonal, Melb and Flobe levels were chosen so that the two traits did not correlate with one another ($r=.03$) across targets.

Casey's summarized preference for Melb. The dependent measure was participants' judgment of Casey's summarized preference for Melb, assessed with four items: "How important is Melb to Casey in a romantic partner?", "How much does Casey value Melb in a romantic partner?," "How desirable is Melb to Casey in a romantic partner?," and "To what extent does Melb characterize Casey's ideal romantic partner?" on scales from 1 (not at all) to 9 (extremely). These four items were highly reliable $(\alpha=.98)$ and were thus averaged to form a scale reflecting participants' judgments of Casey's summarized preference for Melb.

Results and Discussion

A 2 (functional preference strength: weak vs. strong) x 2 (stimuli complexity: low vs. high) between-subjects ANOVA revealed a significant main effect of functional preference strength, $F(1,382)=344.56, p<.001, \eta_{\mathrm{p}}^{2}=0.47$, and a marginally significant main effect for stimuli complexity, $F(1,382)=3.58, p=.059, \eta_{\mathrm{p}}^{2}=0.01$. More importantly, the interaction between functional preference strength and the complexity of the stimuli was significant, $F(1$,
382) $=20.41, p<.001, \eta_{\mathrm{p}}^{2}=0.05$, indicating that complexity attenuated the effect of functional preference strength on summarized preference judgments (see Figure 1s).

We conducted tests of simple main effects to further unpack this interaction. When complexity was low (Melb only), participants inferred that Casey's summarized preference for Melb was substantially lower in the weak $(M=4.42, S D=2.28)$ than in the strong $(M=8.05, S D$ $=0.91)$ functional preference condition, $F(1,382)=259.63, p<.001, d=2.05$. When complexity was high (both Melb and Flobe), this effect was still significant but smaller: Participants indicated that Casey's summarized preference for Melb was lower in the weak ($M=$ 5.43, $S D=1.63)$ than the strong $(M=7.64, S D=0.99)$ functional preference condition $F(1,382)$ $=101.24, p<.001, d=1.74$.

Figure 1s: Supplemental Study 1a Results

In the high complexity condition, participants also reported Casey's summarized preference for Flobe using the same four items $(\alpha=.96)$ that they used to report Casey's summarized preference for Melb. This preference did not differ significantly between the strong $(M=6.09, S D=1.61)$ and weak $(M=6.49, S D=1.78)$ conditions, $t(196)=1.64, p=.103, d=$.23. This small effect likely reflects the fact that the functional preference for Flobe was identical across the two conditions, although it is perhaps notable that participants seemed to be contrasting their Flobe preference judgments away from their Melb preference judgments (i.e., summarized preferences for Flobe were higher when summarized preferences for Melb were lower, and vice versa).

This study demonstrates that participants can successfully infer a summarized attribute preference from a corresponding functional attribute preference, but also shows that this ability is attenuated when evaluating more complex stimuli. Participants in the weak functional preference condition indicated that Melb was significantly less important to Casey than participants in the strong functional preference condition, but the diminished effect size in the high complexity conditions suggest that increased complexity (via the addition of Flobe) may have interfered with the process of translating a functional into a summarized attribute preference. In other words, it may be more difficult for people to accurately infer summarized from functional attribute preferences when demands on working memory are comparatively high because they have to keep track of a variety of different traits (as in the real world).

Supplemental Study 2a

We employed a 2 (attribute quantity: low vs. high) x 2 (stimuli complexity: low vs. high) experimental design to examine whether participants' judgments of another person's summarized preference for an attribute varied as a function of the quantity of that attribute in the population
of interest, and whether this effect was moderated by stimuli complexity. Given the pattern of results we observed in Supplemental Study 1a when we increased the complexity of the stimuli, we expected that a biasing effect of attribute quantity might be more likely to emerge under conditions of high complexity (i.e., when adding the attribute Flobe, just as in Supplemental Study 1a). In other words, adding an extraneous variable for participants to monitor might cause judgments of summarized preferences to be unduly influenced by incidental situational factors that do not actually reflect underlying functional preferences.

Method

Participants. Participants were 407 workers recruited from MTurk. Nineteen participants who completed the survey were excluded from any subsequent analyses because they selected the incorrect response to the attention check item, making our final sample size 388 Mechanical Turk workers (48.5% male, 51.3% female and 0.26% Other; aged $18-76, M_{\text {age }}=35.7, S D=12.1$).

Procedure. The procedure was identical to Supplemental Study 1a (participants learned about an imaginary character named Casey), except for the following major change: The slideshow depicted 24 potential mates who, on average, had either relatively low quantities of Melb (average Melb $=5.5$) or high quantities of Melb (average Melb $=7.5$; see Figure 5 of the main manuscript) Casey's functional preference for Melb was held constant across these two attribute quantity conditions, and was designed to be of moderate strength (i.e., the average Melb of the people Casey liked was always 3 units higher than the average Melb of the people Casey disliked.) This means that regardless of whether the average quantity of Melb in the population of potential mates was low or high, Melb levels predicted Casey's evaluations of potential mates to the same extent. The dependent measure was the same four-item summarized preference measure from Supplemental Study $1(\alpha=.96)$.

Results and Discussion

A 2 (attribute quantity: low vs. high) x 2 (stimuli complexity: low vs. high) betweensubjects ANOVA revealed a main effect of attribute quantity, $F(1,384)=11.82, p=.001, \eta_{\mathrm{p}}{ }^{2}=$ 0.03 ; there was no significant main effect of stimuli complexity, $F(1,384)=1.12, p=.291, \eta_{\mathrm{p}}^{2}=$ 0.00. Importantly, the analysis also revealed the predicted interaction between the quantity of Melb in the population and the complexity of the stimuli, $F(1,384)=3.87, p=.050, \eta_{\mathrm{p}}{ }^{2}=0.01$, indicating that complexity exacerbated the effect of attribute quantity on summarized preference judgments (Figure 2s).

Simple main effects tests indicated that when stimuli complexity was low, participants' judgments of Casey's summarized preference for Melb did not differ significantly between the low $(M=6.70, S D=1.70)$ and high $(M=6.92, S D=1.56)$ attribute quantity conditions, $F(1$, 384) $=1.06, p=.303, d=0.14$. However, when stimuli complexity was high, participants' judgments of Casey's summarized preference for Melb was lower in the low $(M=6.24, S D=$ $1.35)$ than the high $(M=7.06, S D=1.29)$ attribute quantity condition, $F(1,384)=14.83, p<$ $.001, d=0.62$. These findings suggest that stimuli complexity moderates the extent to which the quantity of an attribute in the population influences people's judgments of a summarized preference for that attribute.

Figure 2s: Supplemental Study 2a Results

In the high complexity condition, participants again reported Casey's summarized preference for Flobe ($\alpha=.96$). This preference showed a marginally significant pattern that was the opposite of the Melb pattern: The Flobe preference was higher in the low $(M=6.63, S D=$ 1.46) than the high $(M=6.27, S D=1.55)$ Melb quantity conditions, $t(195)=1.69, p=.092, d=$.24. Again, participants seemed to be contrasting their Flobe preference judgments away from their Melb preference judgments, although this effect was small relative to the effect of Melb quantity in the same two conditions (i.e., $d=.62$ vs. .24).

Supplemental Study 3

The factor design of this study was identical to that described in Study 3 in the main manuscript (attribute quantity x reference standard). However, Supplemental Study 3 assessed
participants' judgments of another person's (Casey's) summarized preferences instead of their own.

Method

Participants. Participants were 1224 workers recruited from MTurk. Seventy-two participants who completed the survey were excluded for failing the attention check, making our final sample size 1152 (71.0\% male; aged $\left.17-79, M_{\text {age }}=35.2, S D=11.9\right)$.

Procedure. This study involved a 2 (attribute quantity: low vs. high) x 3 (reference standard: no Flobe vs. unequal Flobe vs. equal Flobe) between-subjects design. The attribute quantity factor was manipulated just as in Study 2 and Supplemental Study 2a, so that the average amount of Melb in the pool of potential mates was either low or high.

Manipulating Flobe as a reference standard. The reference standard factor manipulated the extent to which participants were able to use the amount of Flobe in the population as a reference standard against which to judge the relative value of Melb. Just as in Study 3, this factor had three conditions: (a) the no Flobe condition, (b) the unequal Flobe condition, and (c) the equal Flobe condition.

The no Flobe condition was identical to the low complexity conditions in Study 2 and Supplemental Study 2a wherein potential mates had, on average, relatively low average amounts of Melb (average $=5.5$) or relatively high average amounts of Melb (average $=7.5$). Just as in previous studies, no information regarding Flobe was provided in this condition.

The unequal Flobe condition was identical to the high complexity conditions in Study 2 and Supplemental Study 2a. The average Melb of potential mates was either less than their average amount of Flobe (low attribute quantity condition: Melb is 5.5 and Flobe is 6.5) or
greater than their average amount of Flobe (high attribute quantity condition: Melb is 7.5 and Flobe is 6.5; see Figure 7, Unequal Flobe Condition).

In the equal Flobe condition, we adjusted the average amount of Flobe to be equal to the average amount of Melb. In the low attribute quantity condition, the average Melb of potential mates was 5.5 , so the average amount of Flobe was adjusted to be 5.5 as well (we accomplished this by subtracting 1 unit of Flobe from each of the 24 potential mates that appeared in the relative differences condition). In the high attribute quantity condition, the average Melb of potential mates was 7.5 , so the average amount of Flobe was adjusted to be 7.5 as well (we accomplished this by adding 1 unit of Flobe to each of the 24 potential mates; see Figure 7 of the main manuscript, Equal Flobe Condition).

Casey's summarized preference for Melb. Participants responded to the same four-item scale described in Supplemental Studies 1a and 2a ($\alpha=.95$).

Results and Discussion

Recall that a standard-of-comparison account would predict the emergence of a two-way interaction between quantity and reference standard. That is, the previously obtained main effect of quantity should be stronger in the unequal Flobe than in the no Flobe and equal Flobe conditions. A 2 (attribute quantity: low vs high Melb) x 3 (reference standard: no Flobe vs. unequal Flobe vs. equal Flobe) factorial ANOVA revealed significant main effects of both attribute quantity, $F(1,1146)=17.42, p<.001, \eta_{\mathrm{p}}^{2}=0.02$, and reference standard, $F(2,1146)=$ 4.27, $p=.014, \eta_{\mathrm{p}}^{2}=0.01$. More importantly, the analysis also revealed the predicted interaction between attribute quantity and reference standard, $F(2,1146)=4.38, p=.013, \eta_{\mathrm{p}}^{2}=0.01$, suggesting that the effect of attribute quantity on summarized preference judgments depended on whether participants were able to use Flobe as a referent or not (Figure 3s).

Simple main effects tests indicated that as expected, the no Flobe condition replicated the findings from Supplemental Study 2a: Participants' judgments of Casey's summarized preferences were very similar in the low $(M=6.75, S D=1.69)$ and high $(M=7.04, S D=1.45)$ attribute quantity conditions, $F(1,1146)=3.87, p=.050, d=0.18$. Meanwhile, as expected, the unequal Flobe condition replicated Supplemental Study 2a as well: When the average amount of Melb was less than the average amount of Flobe (the low attribute quantity condition), participants indicated that Casey's summarized preference for Melb was lower $(M=6.31$, $S D=1.53$) than the high attribute quantity condition $(M=6.99, S D=1.29)$ where the average amount of Melb was greater than the average amount of $F l o b e, F(1,1146)=21.72, p<.001, d=$ 0.48 .

Of special importance to the present study, in the equal Flobe condition, the effect of attribute quantity on summarized preference judgments disappeared. That is, when the average amount of Melb and Flobe in the environment were equal, participants' judgments of Casey's summarized preferences were similar across the low $(M=6.89, S D=1.18)$ and high $(M=6.97$, $S D=1.41)$ attribute quantity conditions, $F(1,1146)=0.33, p=.565, d=0.06$. That is, in the absence of a relative difference between Melb as compared to Flobe, participants were not biased by the absolute quantity of Melb when making summarized preference judgments.

Figure 3s: Supplemental Study 3 Results

Reference Standard
In the unequal Flobe and equal Flobe conditions, participants again reported Casey's summarized preference for Flobe $(\alpha=.97)$. A 2 (attribute quantity: low vs high Melb) x 2 (reference standard: unequal Flobe vs. equal Flobe) factorial ANOVA revealed a nonsignificant main effect of both attribute quantity, $F(1,758)=0.04, p=.837, \eta_{\mathrm{p}}{ }^{2}=0.00$, and reference standard, $F(1,758)=1.16, p=.282, \eta_{\mathrm{p}}^{2}=0.00$, and a significant interaction between attribute quantity and reference standard, $F(1,758)=8.55, p=.004, \eta_{\mathrm{p}}{ }^{2}=0.01$.

Simple main effects tests indicated that participants' judgments of Casey's summarized preferences for Flobe in the unequal Flobe condition replicated the trend in Supplemental Study 2a: When the average amount of Flobe was greater than the average amount of Melb (the low attribute quantity condition), participants indicated that Casey's summarized preference for

Flobe was higher $(M=6.88, S D=1.45)$ than the high attribute quantity condition $(M=6.53, S D=$ 1.47) where the average amount of Flobe was lower than the average amount of $\operatorname{Melb}, F(1,758)$ $=4.85, p=.028, d=0.24$. However, this effect was again smaller than the parallel effect for Melb ($d=.48$ vs. . 24). In the equal Flobe condition, simple main effects tests revealed a marginally significant difference between the low $(M=6.43, S D=1.62)$ and high $(M=6.74, S D=1.65)$ attribute quantity conditions, $F(1,758)=3.73, p=.054, d=-0.19$. Overall, this study again provides some suggestive evidence that participants were contrasting their Flobe judgments away from their Melb judgments-they always provided the Melb judgments first-but the effects on Flobe tended to be smaller than the contrasting effect on Melb.

Appendix D: Supplemental Studies 1b and 1c

Supplemental Study 1b

Method

Participants. Participants were 100 workers recruited from MTurk. Three participants who completed the survey were excluded from any subsequent analyses because they selected the incorrect response to the attention check item, making our final sample size 97 participants (60.8% male; ages between 18 and 62 years old, $M_{\text {age }}=29.3, S D=9.4$).

Procedure. The procedure and materials were identical to the low complexity condition of Supplemental Study 1a with one exception: participants' summarized preference judgements were measured with a single item: "How important is Melb to Casey in a romantic partner?" on a scale ranging from 1 (not at all) to 9 (extremely).

Results and Discussion

We conducted an independent samples t-test to determine whether participants' ratings of how important Melb was to Casey in a romantic partner (Casey's summarized preference for Melb) varied as a function of Casey's functional preference for Melb. As hypothesized, participants in the weak functional preference condition indicated that Melb was significantly less important to Casey ($M=3.67, S D=2.24$) than participants in the strong functional preference condition $(M=7.69, S D=1.27), t(76)=10.88, p<.001, d=2.21$. Thus, in a direct replication of the low complexity condition of Supplemental Study 1a, participants' judgments of Casey's summarized preferences for Melb reflected Casey's functional preference for Melb, suggesting that participants were able to translate Casey's functional preference into a corresponding summarized preference.

Supplemental Study 1c

Method

Participants. Participants were 104 workers recruited from MTurk. Four participants who completed the survey were excluded from any subsequent analyses because they selected the incorrect response to the attention check item, making our final sample size 100 Mechanical Turk workers (56.0% male; ages between 18 and 73 years old, $M_{\text {age }}=35.3, S D=11.3$).

Procedure. The procedure and materials were identical to the high complexity condition of Supplemental Study 1a, except once again participants summarized preference judgements were measured with the single item "How important is Melb to Casey in a romantic partner?" on a scale ranging from 1 (not at all) to 9 (extremely). The Flobe preference was also measured with a single item "How important is Flobe to Casey in a romantic partner?"

Results and Discussion

Participants in the weak functional preference condition reported that Melb was significantly less important to Casey $(M=7.27, S D=1.65)$ than participants in the strong functional preference condition $(M=7.85, S D=0.99), t(98)=2.13, p=.036$, but this effect $(d=$ 0.43) was considerably weaker compared to the low complexity scenario reported in Supplemental Study 1b $(d=2.21)$. Also, participants reported that Casey had a stronger preference for Flobe in the weak condition $(M=7.42, S D=1.65)$ than the strong $(M=6.33, S D=$ 1.20) condition, $t(98)=3.80, p<.001, d=.76$.

Taken together, these results parallel those reported in Supplemental Study 1a: Supplemental Study 1b is a direct replication of the Supplemental Study 1a's low complexity condition, and Supplemental Study 1c is a direct replication of Supplemental Study 1a's high complexity condition (Figure 4s). Also, results for the Flobe preference in Supplemental Study

1c suggests that the functional preference manipulation for $\underline{\text { Melb }}$ pushed participants to adjust their estimates of Casey's summarized preference for Flobe away from their summarized preferences for Melb.

Figure 4s. Supplemental Study 1b and 1c Results

Low Complexity (Melb only)

High Complexity (Melb and Flobe)

Appendix E: Supplemental Studies 2b and 2c

Supplemental Study 2b

Method

Participants. Participants were 101 MTurk workers. Five participants who completed the survey were excluded from any subsequent analyses because they selected the incorrect response to the attention check item, making our final sample size 96 (52.1% male; ages between 18 to 69 years old, $\left.M_{\text {age }}=31.8, S D=11.5\right)$.

Procedure. The procedure and materials were identical to the low complexity condition of Supplemental Study 2a, except participants' summarized preference judgements were measured with the same single item reported in Supplemental Studies 1b and 1c.

Results and Discussion

Directly replicating the results in the low complexity condition of Supplemental Study 2a, participants' judgments of Casey's summarized preferences were similar across the low ($M=$ $6.71, S D=1.49)$ and the high $(M=6.87, S D=1.17)$ attribute quantity conditions, $t(94)=0.58, p$ $=.565, d=0.12$. Thus, when evaluating simple stimuli, participants were able to accurately translate Casey's functional preference into a summarized preference, regardless of the average amount of Melb in the population of potential partners.

Supplemental Study 2c

Method

Participants. Participants were 98 MTurk workers. Four participants were excluded because they selected an incorrect response to the attention check item, resulting in a final sample size of 94 (50.0% male; ages between 19 and 73 year old, $M_{\text {age }}=38.5, S D=14.7$).

Procedure. The procedure and materials were identical to the high complexity condition of Supplemental Study 2a, except participants' summarized preference judgements were measured with a single item as reported above.

Results and Discussion

Directly replicating the results in the high complexity condition of Supplemental Study 2a, participants assigned to the low attribute quantity condition reported that Casey valued Melb significantly less $(M=6.15, S D=1.81)$ than participants assigned to the high attribute quantity condition $(M=6.87, S D=1.61), t(92)=2.04, p=.044, d=0.42$ (Figure 5 s$)$. Thus, participants' judgments of Casey's summarized preferences for Melb were influenced by the average quantity of Melb in the population when evaluating high complexity stimuli. Also, participants reported that Casey valued Flobe more in the low $(M=6.98, S D=1.39)$ than the high $(M=6.30, S D=$ 1.60) Melb quantity conditions, $t(92)=2.18, p=.032, d=.45$. Again, participants seemed to be contrasting their Flobe preference judgments away from their Melb preference judgments. Jointly, the results of Supplemental Studies 2b and 2c replicated Supplemental Study 2a.

Figure 5s. Supplemental Study 2b and 2c Results

Low Complexity (Melb only)

High Complexity (Melb and Flobe)

Appendix F: Supplemental Study 4

Supplemental Study 4 was an initial attempt to identify an explanation for why the average level of Melb in a population biases participants' summarized preference judgments under conditions of high complexity. One plausible account for this pattern of results centers on the feature-positive effect, which refers to the tendency for individuals to preferentially attend to information where a relevant feature of interest is paired with the occurrence of an event (feature-positive cases) rather than the non-occurrence of an event (feature-negative cases; Jenkins \& Sainsbury, 1970). For example, Sainsbury and Jenkins (1967) demonstrated that subjects performed better on a covariation detection task when the task contained featurepositive trials (trials where a relevant feature-in this case a black dot-was paired with the presence of food reinforcement) rather than feature-negative trials (the black dot was paired with the absence of food reinforcement). Similarly, participants who judged the covariation between cloud seeding and rainfall preferentially attended to cases where events did (versus did not) occur (i.e., they attended primarily to cases when cloud seeding and rainfall co-occurred compared to all other cases; Ward \& Jenkins, 1965).

In our studies, one could apply this reasoning to define feature-positive trials as trials in which the relevant feature Melb was paired with the occurrence of an event (Casey liking a potential mate), rather than the non-occurrence of an event (Casey not liking a potential mate). Building on the feature positivity literature, we might then expect that participants' judgments of Casey's summarized preference for Melb would be disproportionately influenced by featurepositive information. That is, in order to correctly identify Casey's functional preference for Melb, participants must attend to the Melb levels of both the liked and disliked potential mates equally, as it is the difference between the average Melb levels of these two groups that
constitutes Casey's functional preference for Melb. However, if participants are disproportionately weighting the importance of the potential mates Casey likes (i.e., featurepositive cases), then participants in the low quantity condition may conclude that Casey values Melb less than those in the high quantity condition, because the average Melb of the potential mates Casey likes in the low quantity condition is indeed less than the average Melb of the potential mates Casey likes in the high quantity condition.

Meanwhile, considerable research has demonstrated that increasing the complexity of a task increases demands on working memory, which can trigger or enhance a range of biases and heuristics (e.g., Allred, Crawford, Duffy, \& Smith, 2016; De Dreu, 2003; Klayman \& Ha, 1987; see also Chaiken \& Ledgerwood, 2012). Thus, we might expect that any bias produced by a feature-positivity effect would be especially likely to emerge when complexity is high (versus low).

In Supplemental Study 4, to directly test the possibility that feature positivity might explain the biasing effect of attribute level in the high complexity condition, we added a condition wherein the covariation detection task included only feature-positive cases (for an example of this strategy, see Tweney et al, 1980). In this condition, rather than pairing Melb with either the occurrence of an event (liking a potential mate) or the non-occurrence of an event (not liking a potential mate), we paired Melb with the occurrence of one of two possible events (being assigned to one of two teams). If complexity causes participants to focus on feature-positive cases, then under conditions of high complexity, participants completing the original version of the task (where potential mates are liked/disliked) should be affected by the quantity of Melb in the environment more strongly than participants completing the version of the task where potential mates are assigned to teams.

Method

Participants. Participants were 809 workers recruited from MTurk. Thirty-nine participants who completed the survey were excluded for failing the attention check item, making our final sample size 770 (45.6% male, 54.3% female and 0.13% "Other"; ages between 18 and 75 years old, $M_{\text {age }}=39.6, S D=13.2$).

Procedure. This study involved a 2 (attribute quantity: low vs. high) x 2 (stimuli complexity: low vs. high) x 2 (task version: liking vs. teams) between-subjects design. The first two factors were manipulated just as in Supplemental Study 2a, and the procedure was identical to that study except for the following changes.

Manipulating task version to test a feature-positivity account. In all of the previous studies, the covariation detection task involved both feature-positive and feature-negative cases. In the feature-positive cases, the Melb-level of potential mates was accompanied by the information that Casey liked them (the occurrence of an event); in the feature-negative cases, the Melb-level of potential mates was accompanied by the information that Casey disliked them (the non-occurrence of an event). This condition-which we call the liking task condition in the present study-was identical to the covariation detection tasks used in previous studies.

In the teams task condition, the covariation detection task only involved feature-positive cases. Specifically, the amount of Melb a potential mate had was paired with the occurrence of one of two potential events: Casey assigned each potential mate to Robert's team or to John's team, as described below. To further ensure that these two events were comparable, we selected the team names based on a review from Kasof (1993) which reported that the names "Robert" and "John" were rated as equally attractive and competent when measured repeatedly across three decades.

Participants in the teams task condition watched an instructional video that was similar to those described in previous studies, except that instead of meeting 24 potential mates at a party, Casey organized a game for everyone to play at the party and met 24 potential teammates. This version of the instructional video explained that Casey put some people on Robert's team and put other people on John's team. Participants then viewed a slideshow of the 24 people that played the game with Casey-12 people were placed on Robert's team and 12 people were placed on John's team. Each slide contained how much Melb (or how much Melb and Flobe) each player had, as well as information about whether Casey assigned the person to Robert's team or John's team. Participants were told that while viewing the slideshow they should "try to get an idea of which team Casey put each person on, as well as how much Melb [or Melb and Flobe] each person [had]."

Casey's summarized preference for Melb. Immediately after viewing the slideshow, participants in the liking task condition answered the question "How much did the amount of Melb a person had influence whether Casey liked them?" Participants in the teams task condition answered the question: "How much did the amount of Melb a person had influence which team Casey put them on?" Both items used a response scale that ranged from 1 (not at all) to 9 (extremely). Thus, in both conditions, the dependent measure assessed participants' perceptions of the extent to which Melb influenced Casey's responses to people at the party (note that we slightly modified the wording of the dependent measure for this study so that it would be analogous across task conditions). The Flobe preference item in the high complexity condition was worded similarly.

Results

Recall that a feature-positivity account would predict the emergence of a three-way interaction between quantity, complexity, and task version such that the previously obtained quantity x complexity interaction should emerge more strongly for the liking task than the teams task. A 2 (attribute quantity: low vs. high) x 2 (stimuli complexity: low vs. high) x 2 (task version: liking vs. teams) factorial ANOVA indicated a significant main effect of attribute quantity, $F(1,762)=5.66, p=.018, \eta_{\mathrm{p}}{ }^{2}=0.01$, and no significant main effect of stimuli complexity, $F(1,762)=0.42, p=.517, \eta_{\mathrm{p}}{ }^{2}=0.00$ or task version, $F(1,762)=0.20, p=.653, \eta_{\mathrm{p}}{ }^{2}$ < 0.00 .

The factorial ANOVA also revealed non-significant effects for the task version x attribute quantity, $F(1,762)=1.36, p=.244, \eta_{\mathrm{p}}^{2}=0.00$, and task version x stimuli complexity, $F(1,762)$ $=0.77, p=.411, \eta_{\mathrm{p}}^{2}=0.00,2$-way interactions. There was a marginally significant 2 -way interaction between attribute quantity and stimuli complexity, $F(1,762)=3.01, p=.083, \eta_{\mathrm{p}}{ }^{2}=$ 0.004 , which approximately replicates the results from Supplemental Study 2a. ${ }^{1}$

Importantly, however, there was no evidence for the three-way interaction predicted by a feature-positivity account, $F(1,762)=0.02, p=.884, \eta_{\mathrm{p}}{ }^{2}<0.001$. In other words, task version did not moderate the two-way interaction between attribute quantity and stimuli complexity.

We can explore the data further by unpacking the marginally significant two-way interaction between attribute quantity and stimuli complexity into simple main effects (collapsing across task version). Replicating the results from Supplemental Study 2a, when viewing simple stimuli (Melb only) participants inferred that Casey's summarized preference for Melb was similar across the low $(M=6.43, S D=1.85)$ and high $(M=6.52, S D=2.01)$ attribute

[^0]quantity conditions, $F(1,383)=0.21, p=.650, d=0.05$. But when viewing more complex stimuli (Melb and Flobe), participants inferred that Casey's summarized preference for Melb was lower in the low $(M=6.12, S D=1.79)$ than high $(M=6.66, S D=1.72)$ attribute quantity conditions, $F(1,383)=8.44, p=.004, d=0.31$.

Participants in the high complexity condition also reported Casey's summarized preference for $F l o b e$, but there were no main effects of attribute quantity, $F(1,380)=0.34, p=$ $.559, \eta_{\mathrm{p}}^{2}=0.00$, or task version, $F(1,380)=0.47, p=.492, \eta_{\mathrm{p}}^{2}<0.00$. Also, there was no attribute quantity x task version interaction, $F(1,380)=1.48, p=.225, \eta_{\mathrm{p}}{ }^{2}<0.00$.

Discussion

Supplemental Study 4 provided no evidence for a feature-positivity account of the bias observed in Study 2 and Supplemental Studies 2a, 2b, and 2c (i.e., the tendency for participants to incorporate attribute quantity information when making summarized preference judgments under conditions of complexity). Whereas a feature-positivity account would predict that this bias would disappear in a version of the task that contained all feature-positive events (i.e., the teams task), we found no evidence for moderation by task type (teams vs. liking). Furthermore, in both versions of the task, results largely replicated the previous findings such that the quantity of Melb in the population biased participants' judgments when the stimuli were complex. In summary, the tendency for people to disproportionally weight feature-positive events when working memory is taxed (Klayman \& Ha, 1987) was not a promising mechanism for explaining the effects documented in Study 2 and Supplemental Studies 2a, 2b, and 2c.

Figure 6s. Supplemental Study 4 Results

Liking Task

Teams Task

Appendix G: Participants Performance on the DateFest Game

Although participants' performance on the DateFest game was not directly relevant to our hypotheses, we provide the performance data below in all three studies for the interested reader. The first set of columns refers to the percentage of "good dates" (i.e., the dates that earned 10 points) to which participants said "yes," the second set of columns refers to the percentage of "bad dates" (i.e., the dates that subtracted 10 points) to which participants said "yes," and the third set of columns refers to the average final score earned by participants after making all 24 choices. (The final score essentially reflects the difference between the "good dates" and "bad dates" percentages.)

Study 1		Yes \% for good dates		Yes \% for bad dates		Final Score	
		Functional preference		Functional preference		Functional preference	
		Weak	Strong	Weak	Strong	Weak	Strong
Complexity	Low	60.9\%	83.4\%	57.7\%	21.4\%	53.9	124.3
	High	62.9\%	83.8\%	43.7\%	21.1\%	73.0	126.5
Complexity		$F(1,360)=0.74$		$\mathrm{F}(1,360)=16.41^{* * *}$		$\mathrm{F}(1,360)=11.83 * * *$	
Functional Preference		$F(1,360)=157.57^{* * *}$		$F(1,360)=268.24^{* * *}$		$F(1,360)=397.81^{* * *}$	
Interaction		$F(1,360)=0.59$		$F(1,360)=13.61^{* * *}$		$F(1,360)=7.44^{* * *}$	

Study 2		Yes \% for good dates		Yes \% for bad dates		Final Score	
		Melb Attribute Quantity		Melb Attribute Quantity		Melb Attribute Quantity	
		Low	High	Low	High	Low	High
Complexity	Low	71.3\%	67.7\%	31.3\%	37.9\%	98.0	84.8
	High	72.3\%	72.9\%	35.2\%	34.4\%	94.4	99.0
Complexity		$F(1,352)=3.07$		$F(1,352)=0.01$		$F(1,352)=1.88$	
Melb Quantity		$F(1,352)=0.71$		$F(1,352)=2.35$		$F(1,352)=2.90$	
Interaction		$F(1,352)=1.49$		$F(1,352)=3.82$		$\mathrm{F}(1,352)=8.15^{* *}$	

Study 3		Yes \% for good dates		Yes \% for bad dates		Final Score	
		Melb Attribute Quantity		Melb Attribute Quantity		Melb Attribute Quantity	
		Low	High	Low	High	Low	High
Reference	No Flobe	69.9\%	71.8\%	34.6\%	42.6\%	92.3	84.8
	Unequal Flobe	80.6\%	73.1\%	35.6\%	33.0\%	94.6	98.1
	Equal Flobe	73.2\%	74.8\%	31.4\%	37.3\%	100.0	95.1
Reference		$\mathrm{F}(2,1095)=13.77^{* * *}$		$\mathrm{F}(2,1095)=6.29 * *$		$\mathrm{F}(2,1095)=10.11^{* * *}$	
Melb Quantity		$F(1,1095)=1.88$		$\mathrm{F}(1,1095)=10.87^{* *}$		$F(1,1095)=2.70$	
Interaction		$\mathrm{F}(2,1095)=10.71^{* * *}$		$\mathrm{F}(2,1095)=8.19^{* * *}$		$F(2,1095)=3.62$ *	

[^0]: ${ }^{1}$ Although this two-way interaction was marginally significant when these participants were excluded (as per our data analysis plan), including participants who provided an incorrect answer to the attention check revealed a nonsignificant interaction.

